Distance-based human action recognition using optimized class representations
نویسندگان
چکیده
We study distance-based classification of human actions and introduce a new metric learning approach based on logistic discrimination for the determination of a low-dimensional feature space of increased discrimination power. We argue that for effective distance-based classification, both the optimal projection space and the optimal class representation should be determined. We qualitatively and quantitatively illustrate the superiority of the proposed approach to metric learning approaches employing the class mean for class representation. We also introduce extensions of the proposed metric learning approach to allow for richer class representations and to operate in arbitrary-dimensional Hilbert spaces for non-linear feature extraction and classification. Experimental results denote that the performance of the proposed distance-based classification schemes is comparable (or even better) to that of Support Vector Machine classifier (in both the linear and kernel cases) which is currently the standard choice for human action recognition.
منابع مشابه
Action Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کاملAlternative Semantic Representations for Zero-Shot Human Action Recognition
A proper semantic representation for encoding side information is key to the success of zero-shot learning. In this paper, we explore two alternative semantic representations especially for zero-shot human action recognition: textual descriptions of human actions and deep features extracted from still images relevant to human actions. Such side information are accessible on Web with little cost...
متن کاملFeature extraction and representation for human action recognition
Human action recognition, as one of the most important topics in computer vision, has been extensively researched during the last decades; however, it is still regarded as a challenging task especially in realistic scenarios. The difficulties mainly result from the huge intra-class variation, background clutter, occlusions, illumination changes and noise. In this thesis, we aim to enhance human...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملA Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation
According to the rapid increase of data, the needs of intelligent data analysis and classification are also increasing. Though there have been developed various methods of classifying given data set into several pre-defined patterns, the distance-based classifier such as nearest neighbor classifier is still one of the most popular methods due to its simplicity and adaptability. However, in orde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 161 شماره
صفحات -
تاریخ انتشار 2015